(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2483 Roll No.

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12 ADVANCE SEMICONDUCTOR DEVICES

Time: 2 Hours

1 3 - W 5 3

Total Marks: 50

- Note: (1) Attempt all questions.
- (2) Marks are indicated for each question.
 - (3) Assume the missing data, if any.
 - (4) Useful Physical constants:

Boltzmann's constant, $K = 1.38 \times 10^{-23} \text{ J/K}$

Electronic rest mass, $m_o = 9.11 \times 10^{-31} \text{ Kg}$

Planck's constant, $h = 6.63 \times 10^{-34} \text{ J-s}$

Electronic charge, $q = 1.60 \times 10^{-19} C$

Permittivity of free space, $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$

Electron effective mass, $m_p^* = (1.1 \text{ m}_o)_{Si}$, $(0.067 \text{ m}_o)_{GaAs}$ Hole effective mass, $m_p^* = (0.56 \text{ m}_o)_{Si}$, $(0.48 \text{ m}_o)_{GaAs}$

- 1. Attempt any two parts of the following: $(2\times6=12)$
 - (a) (i) What do you mean by effective mass of carrier?
 What is the kinetic energy of a hole at the top of the valence band?
 - (ii) Calculate the relaxation times for electrons and holes
 - (b) Define and derive the expression for minority carrier life time.

- (c) A photon of monochromatic light of wavelength 5000 Å is absorbed in GaAs and excites an electron from the valence band into conduction band. Calculate the velocity of electron.
- 2. Attempt any *two* parts of the following: $(2\times6=12)$
 - (a) Show that the depletion region capacitance of a p-n junction for any arbitrary doping on the two sides can always be expressed by

$$C_i = \epsilon_s A/W$$

where, \in is the permittivity of the semiconductor,

A and W are the cross sectional area and depletion width of the junction.

- (b) A Si sample with doping concentration of 10^{17} phosphorus atoms/cm³ is optically excited at 300 K such that $g_{op} = 10^{20}$ EHP/cm³-sec and $\tau_n = \tau_p = 10$ µsec. What is the separation of the quasi-Fermi levels? Draw the energy band diagram of the sample.
- (c) Assume that an ideal Schottky barrier is formed on ntype Si having 10¹⁶ As atoms/cm³. The metal work function is 4.5 eV and Si electron affinity is 4 eV.
 - Draw the equilibrium diagram and describe the contact.
 - (ii) Draw the forward and reverse biased diagram and explain.
- 3. Attempt any *two* parts of the following: $(2\times6=12)$
 - (a) With a suitable diagram describe the working principle of a photodiode. Explain how the various quadrants of its V-I characteristics are used in different applications?
 - (b) Explain degenerate semiconductors. What are their

- different types? How do they differ from conventional semiconductor? What are the uses of these materials? Explain the device operation with characteristics.
- (c) What is meant by IMPATT? Describe briefly the principle of operation of IMPATT diode.
- 4. Attempt any *two* parts of the following: (2×7=14)
 - (a) Discuss briefly the principle of operation of a GaAs MESFET. Also derive an expression for I-V characteristic of the device. Enumerate special features of MESFETs.
 - (b) Sketch approximate distribution of charge, electric field and electrostatic potential in the ideal MOS diode using n-type Si in inversion condition and explain them.
 - (c) Describe briefly the principle of operation of charge coupled devices. With suitable schematics show the input and output arrangements for a CCD and explain charge transfer efficiency of the device.

3